
Source-Code Instrumentation and Quantification of Events
Robert E. Filman

RIACS
NASA Ames Research Center, MS 269/2

Moffett Field, CA 94035 U.S.A.
+1 650-604-1250

rfilman @ mail.arc.nasa.gov

Klaus Havelund

Kestrel Technology
NASA Ames Research Center, MS 269/2

Moffett Field, CA 94035 U,S.A
+1 650--604-3366

havelund@ emafl.arc.nasa.gov

ABSTRACT

Aspect-Oriented Programming is making quantified programmatic

assertions over programs that otherwise are not annotated to

receive these assertions, Varieties of AOP systems are

characterized by which quantified assertions they allow, what they

permit in the actions of the assertions (including how the actions

interact with the base code), and what mechanisms they use to

achieve the overall effect. Here, we argue that all quantification is

over dynamic events, and describe our preliminary work in

developing a system that maps dynamic events to transformations

over source code. We discuss possible applications of this system,

particularly with respect to debugging concurrent systems.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and

Features - aspects. D.3.2 [Programming Languages] Language

Classifications - aspect-oriented programming. D.2.3 [Software

Engineering] Coding Tools and Techniques. D.2.5 [Testing and

Debugging] Debugging aids.

General Terms

Languages.

Keywords
Quantification, events, dynamic events, debugging, program

transformation, model checking.

..........................

1. INTRODUCTION
Elsewhere, we have argued that the programmatic essence of

Aspect-Oriented Programming is making quantified programmatic

assertions [10,12], over programs that otherwise are not annotated

to receive these assertions. That is, in an AOP system, one wants

to be able to say things of the form, "In this program, when the

following happens, execute the following behavior," without

having to go around marking the places where the desired

behavior is to happen. Varieties of AOP systems are characterized

by which quantified assertions they allow, what they permit in the
actions of the assertions (including how the actions interact with

the base code), and what mechanisms they use to achieve the

overall effect. In this paper, we describe our preliminary work in

developing a system that takes the notion of AOP as

quantification to its logical extreme. Our goal is to develop a
system where behavior can be attached to any event during

program execution. We describe the planned implementation of

this system and discuss possible applications of this technology,

particularly with respect to debugging and validating concurrent

systems.

2. EVENTS
Quantification implies matching a predicate about a program.

Such a predicate must be over some domain. In the

quantification/implicit invocation papers, we distinguished

between static and dynamic quantification.

Static quantification worked over the structure of the program.

That is, with static quantification, one could reference the

programming language structures in a system. Examples of such
structures include reference to program variables, calls to

subprograms, loops, and conditional tests.

Many common AOP implementation techniques can be

understood in terms of quantified program manipulation on the

static structure of a program. For example, wrapping (e.g., as seen

in Composition Filters [1], OIF [11], or AspectJ [19,20]) is

effectively embedding particu/ar function bodies in more complex

behavior. AspectJ and OIF also provide a call-side wrapping,

which can be understood as surrounding the calling site with the

additional behavior. An operation such as asserting that class A's

use ofx is the same as class B's use 0fy in Hyper/I [21] can be

realized by substituting a reference to a common generated

variable for x in the text of A, and y in B.

Dynamic quantification, as described in those papers, speaks to

matching against events that happen in the course of program

execution. An example of dynamic quantification is the jumping-

........ _¢Iye-_t-___brem--[2]_ -where- a- method--behaves-- differently

depending upon whether or not it has been called from within (in

the calling-stack sense) a specified routine. Other examples of

interesting dynamic events include the stack exceeding a

particular size, the fifth unsuccessful call to the login routine with

a different password, a change in the number of references to an

object, a confluence of variable values (e.g., when x + y > z), the

blocking of a thread on a synchronization lock, or even a change

irt the executing thread. The cflow operator in Aspect1 is a

dynamic quantification predicate.

We are coming to the belief that all events are dynamic. Static

quantification should be understood as just the subspecies of

events that can be simply inferred, on a one-to-one basis, from the

structures of a program. Static quantification is attractive for its

straightforward AOP implementation, lower complexity, and

independence of programming environment implementation, but

unless one starts processing the program comments, there's little

Event

Accessing the value of a variable or field

Modifying the value of a variable or field

Invoking a subprogram

Cycling through a loop

Branching on a conditional

Initializing an instance

Throwing an exception

Catching an exception

Waiting on a lock

Resuming after a lock wait

Testing a predicate on several fields

Changing a value on the path to another

Swapping the running thread

Being below on the stack

Freeing storage

Throwing an error

Table 1: Events and event loci

Syntactic locus

References to that variable

Assignments to that variable

Subprogram calls

Loop statements

The conditional statement

The constructors for that object

Throw statements

Catch statements

Wait and synchronize statements

Other's notify and end of synchronizations

Every modification of any of _hose fields

Control and data flow analysis over statements (slices)

Not reliably accessible, but atomization may be possible

Subprogram calls

Not reliably accessible, but can try using built-in primitives

Not reliably accessible; could happen anywhere

in the static structure of a program that isn't marked by its
dynamic execution.

If the abstract syntax tree is the domain of static quantification,

what is the domain of dynamic quantification? Considering the

examples in this section, it really has to be events that change the
state (both data state and "program counter") of the base

language's abstract interpreter. However, defining anything in

terms of the abstract interpreter, is problematic. First, as was

illustrated in Smith's work on 3-Lisp [5], programming languages

are not defined in terms of their abstract interpreters. The same

language can be implemented with many different interpreters.

The set of events generated by one implementation of a language

may not correspond to the events generated by another. For
example, a run-time environment that manages its own threads is

.... not-at- all-the-sameas_ne that-relies_on_the._underJ_ying_operating_
system for thread management. Neither is the same as one that

takes advantage of the multiple processors of a real multi-

processor machine. Second, compilers have traditionally been

allowed to rearrange programs so long as they preserve their

input-output semantics. Thus, an optimizing compiler may

rearrange or elide an "obvious" sequence of expected events. And

finally, the data state of the abstract interpreter (including, as it

does, all of memory) can be a grand and awkward thing to
manipulate.

3. A LANGUAGE OF EVENTS
We view these limitations as bumps in the road, rather than

barriers. While we may not be able to capture everything that goes

on in a particular interpretive environment, we can get close

enough for most practical purposes. The strategy we adopt is to

argue that most dynamic events, while not necessarily localized to

a particular spot in the source code, are nevertheless tied to places

in the source code. Table 1 illustrates some primitive events and
their associated code loci.

Users are likely to want to express more than just primitive

events. The language of events will also want to describe

relationships among events, such as that one event occurred

before anotherc\that a set of events match some particular

predicate, that an event occurred within a particular timeframe, or
that no event matching a particular predicate occurred. This

suggests that the event language will need (1) abstract temporal

relationships, such as "before" and "after," (2) abstract temporal

quantifiers, such as "always" and "never", (3) concrete temporal

relationships referring to clock time, (4) cardinaiity relationships

on the number times some event has occurred, and (5) aggregation
relationships for describing sets of events.

-4.--S YSTEM-AR CHITECTURE
We envision a mechanism where a description of a set of event-

action pairs, along with a program, would be presented to a
compiler. Each event action pair would include a sentence

describing the interesting event in the event language and an
action to be executed when that event is realized. Said actions

would be programs, and would be parametefized with respect to

the elements of the matching events. Examples of such assertions
are:

• On every call to methodfoo in a class that implements the

interface B, replace the second parameter of the call to foo

with the result of applying methodfto that parameter.

• Whenever the value of x+y in any object of class A ever

exceeds 5, print a message to the log and reset x to 0.

• If a call to method foo occurs within (some level down on

the stack) method baz but without an intervening call to

Figure 1: System Architecture

method mumble, omit the call to method gorp in the body of
foo.

These examples are in natural language. Of course, any actual

system will employ something formal.

Clearly, a sufficiently "meta" interpretation mechanism would

give us access to many interesting events in the interpreter,

enabling a more direct implementation of these ideas. It has often

been observed that recta-interpretative and reflective systems can

be used to build AOP systems [25]. However, meta-interpreters

have traditionally exhibited poor performance. We are looking for

implementation strategies where the cost of event recognition is

on/y paid when event recognition is used. This suggests a

compiler that would transform programs on the basis of event-

action assertions. Such a compiler would work with an extended

abstract syntax tree representation of a program. It would map

each predicate of the event language into the program locations

that could affect the semantics of that event. Such a mapping

requires not only abstract syntax tree generation (parsing) and

symbol resolution, but also developing primitives with respect to

the control and data flow of the program, determining the

visibility and lifetimes of symbols, and analyzing the atomicity of

actions with respect to multiple threads.

Java compiles into an intermediate form (Java byte codes). In

dealing with Java, there is also the choice as to whether to process

with respect to the source code or the byte code. Each has its

advantages and disadvantages. Byte codes are more real: many of

the issues of interest (actual access to variables, even the power

consumption of instructions) are revealed precisely at the byte-

code level. Working with byte codes allows one to modify classes

- _for-which-one-hasn't-the source-code,including-the-/ava-language-

packages themselves. (JOIE is an example of an AOP system that

performs transformations at the byte code level [3].) On the other

hand, source code is more naturally understandable, allows

writing transformations at the human level, and eliminates the

need for understanding the J'VM and the actions of the compiler.

(De Volder's Prolog-based recta-programming system is an
example of source-level transformation for AOP [6,7].) We find

the complexity arguments appealing. Thus, our implementation

plan is to work at the source code level.

5. EXAMPLES

Event quantification is a general framework for supporting aspect

oriented programming. It can be used for functionality

enhancement, where a program is extended with aspects that add

new functionality. For example, a program could be made more

reliable by transforming its database update events to Nso send

messages to a backup log. Although functionality extension is a

general goal for AOP, we instead discuss some examples within

the area of program verification. (In some cases, we expect to be

able to extend program behavior for functionality insurance:

recovering from some classes of program failure.)

In previous work, we studied various program verification

techniques for analyzing the correctness of programs. Our work

can be classified into two categories: program monitoring [17]

and program scheduling [16,27]. The latter is often called model

checking.

Specification-based monitoring consists of monitoring the

execution of a program, represented by a sequence of events, by

validating the events against a requirements specification. The

specification is written in some formal language, typically a
temporal logic [22]. For example, a typical requirement is,
"Whenever TEMP becomes 100 then within 3 seconds ALARM

becomes true." A typical requirement specification has many such

assertions. We want to be able to run the program and monitor

that specification assertions hold throughout the event trace. The

Java PathExplorer system [17] implements this kind of capability.

It uses the bytecode engineering tool Jtrek [18] to instrument Java

bytecode to emit events to an observer, which contains a data

structure representing the formulae to be checked. Every event

emitted from the running program causes a modification of the

data structure. A warning is raised when a specification is

violated. We plan to experiment using event quantification at the

source code level instead of at the bytecode level. The events to

be caught are obviously those implicitly referred to in the

formula--in the above example, updates to the variables TEMP

and ALARM. That is, whenever one of these variables is updated,

an event consisting of the variable name, the value, and a

timestamp can be emitted to the observer. (The evaluation of the '

temporal formula can even be performed as part of the

quantification action instead of in a separate observer, if real-time

performance is not an issue.) Operating on the source code level

has the clear advantage of simplifying creating the

instrumentation, as one can work in a high-level language, not

bytecode. The commercial-available Temporal Rover system

performs specification-based monitoring, but does not do

automated code instrumentation [8].

Algorithm-based monitoring, like specification-based moni-

toring, watches the execution of a program emitting events. Rather

than matching_against user-defined specifications, algorithm-

based monitoring uses certain general algorithms for detecting

particular kinds of error conditions. Examples are algorithms for

detection of deadlock and data race potentials in concurrent

programs, These algorithms are interesting since the actual
deadlocks or data races do not have to occur in an execution trace

in order to be identified as a potential problem. An arbitrary

execution trace will normally suffice to identify problems. For

example, a cyclic relationship between the locks in a program

(thread T1 takes lock A and then B, while thread '1"2 takes B and

then A) is a potential deadlock. A similar algorithm exists for data

races [23]. These algorithms have been implemented in

PathExplorer using bytecode engineering, and we anticipate

trying them out using event quantification.

Thread scheduling consists of influencing a program's

scheduling in order to explore more thread intefleavings than

would otherwise be achieved with normal testing techniques. As

an example, the above mentioned deadlock situation can be

explicitlydemonstratedbyschedulingthethreadssuchthatT1
takesA, and then T2 immediately takes B. Such a schedule might

never be seen during normal test of the program. Thread

scheduling can be achieved by introducing a centralized scheduler

and forcing all threads to communicate with that scheduler when

shared data structures (such as locks) are accessed. The scheduler

then decides which thread to run, while at the same time keeping

track of its scheduling choices. This information can then be used

to direct the program to explore new interleavings. We have

earlier developed the Java PathFinder system [16,27] for

performing such scheduling analysis using model checking. In

order to avoid exploring the reachable subtree below a given

program state several times, states are stored in cache, and search

is aborted when a state has been visited before. Using

quantification, we plan to experiment with state-less model

checking [15,24] where a program's different interleavings are

explored, but without storing states. An example of program

modification to detect synchronization faults is ConTest [8].

6. RELATED WORK

De Voider and his co-workers [6,7] have argued for doing AOP

by program transformation, using a Prolog-based system working
on the text of Java programs. We want to extend those ideas to

program semantics, combining both the textual locus of dynamic

events and transformations requiring complex analysis of the
source code.

At the 1998 ECOOP AOP workshop, Fradet and Siadholt [131
argued that certain classes of aspects could be expressed as static

program transformations. They expanded this argument at the

1999 ECOOP AOP workshop to one of checking for robustness--

non-localized, dynamic properties of a system's state [14].

Colcombet and Fradet realized an implementation of these ideas

[4], applying both syntactic and semantic program transformations

to enforce desired properties on programs. In that system, the user

can specify a desired property of a program as a regular

expression on syntactically identified points in the program, and

the program is transformed into one that raises an exception when
the property is violated.

7. CONCLUDING REMARKS

In this paper, we've examined the idea of implementing AOP

systems as programs transformed by quantified responses to

_ db_n_ami¢ev_erttz_ T_w_o__Qrp___n_ts_ab_ut__thep!a_c_¢of such _a._s_ste_m

in the order of things are worth making:

• We've been talking about implementation environments,

not software engineering. An underlying implementation

does not imply anything about the "right" organization of

"separate concerns" to present to a user. In particular, we

have been completely agnostic about the appropriate

structure for the actions of action-event pairs. It may be the

case that unqualified use of an event language with raw

action code snippets is a software engineering wonder, but
we doubt it.

• An environment that can map from quantified dynamic
events to modified code would be an excellent environment

for experimenting with and building systems for AOP. In

some sense, these ideas can be viewed as a domain-specific

language for developing aspect-oriented languages.

8. ACKNOWLEDGMENTS

Our thanks to Tarang Patel and Tom Pressburger for their

comments on the draft of this paper.

9. REFERENCES

[1] Bergmans, L., and Aksit, M. Composing crosscutting
concerns using composition filters. Comm. ACM Vol. 44, no
10, 2001, pp. 51-57.

[2] Brichau, L, De Meuter, W., and De Voider, K. Jumping

aspects. Workshop OnAspects and Dimensions of Concerns,

ECOOP 2000, Cannes, France, Jun. 2000. http://trese.cs.

utwente.n//Workshops/adc2000/papers/Brichau.pdf

[3] Cohen, G. Recombining concerns: Experience with

trar_sformation. In First Workshop on Multi-Dimensional

Separation of Concerns in Object-oriented Systems

(OOPSLA '99), Oct. 1999,. http://www.cs.ubc.ca/-murphy/
multid-workshop-oopsla99/position-papers/ws23-cohen.pdf

[4] Colcombet, T. and Fradet, P. Enforcing Trace Properties by

Program Transformation, Proc. 27th ACM Syrup. on

Principles of Programming Languages, Boston, Jan. 2000,
pp. 54-66.

[5] des Rivieres, J. and Smith, B. C. The implementation of

procedurally reflective languages. Conference Record of the

1984 ACM Symposium on LISP and Functional Pro-

gramming, Austin, Texas, Aug. 1984, pp. 331-347.

[6] De Volder, K., Brichau, L, Mens, K., and D'Hondt, T. Logic

Meta-Programming, A Framework for Domain-Specific

Aspect Programming Languages. http://www.cs.ubc.ca/

-kdvolder/b!naries/cacm-aop-paper.pdf

[7] De Volder, K., and D'Hondt, T. Aspect-Oriented Logic Meta

Programming. Proceedings of Meta-Level Architectures and
Reflection, Second International Conference, Reflection'99.

LNCS 1616, Springer-Verlag, 1999, pp. 250-272.

[8] Drusinsky, D. The Temporal Rover and the ATG Rover.

SPIN Model Checking and Software Verification, LNCS

1885, Klaus Havelund, John Penix and Willem Visser (Eds.),

Springer, 2000, pp. 323-330.

[9] Edetstein, O., Farchi, E., Nit, Y., Ratsaby, G., Ur, S.

.... Multithreaded-Java program-test-generation, IBM Systems

Journal, Vol. 41, No 1, 2002, pp. 111-125.

[10]Filman, R.E. "What Is Aspect-Oriented Programming,

Revisited," Workshop on Advanced Separation of Concerns,

15th European Conference on Object-Oriented Program-
ruing, Budapest, 1un. 2001. http://trese.cs.utwente.nl/

Workshops/ecoop01asoc/papers/Filman.pdf

[l l] Filman, R. E., Barrett, S., Lee, D. D., and Linden, T.

Inserting ilities by controlling communications. Comm.

ACM, Vol. 45, No. 1, Jan. 2002, pp. 116-122.

[12]Filman, R. E. and Friedman, D. P. "Aspect-Oriented

Programming is Quantification and Obliviousness,"

Workshop on Advanced Separation of Concerns, OOPSLA

2000, Minneapolis, Oct. 2000. http://trese.cs.utwente.nl/

Workshops/OOPSLA2000/papers/filman.pdf

[13]Fradet,P.andStidholt, M. Towards a Generic Framework

for Aspect-Oriented Programming, Third AOP Workshop,

ECOOP'98 Wor_hop Reader, LNCS, 1543, pp. 394-397,

Jul. 1998. http://trese.cs.utwente.nl/aop-ecoop98/papers/

Fradet.pdf

[14]Fradet, P and Sadholt, M. An aspect language for robust

programming, Int. Workshop on Aspect-Oriented Program-

ming, ECOOP, Jun. 1999. http://trese.cs.utwente.nl/aop-
ecoop99/papers/fradet.pdf

[15] Godefroid P. "Model Checking for Programming Languages

using VeriSoff." Proc. of 24th ACM Syrup. on Principles of

Programming Languages, Paris, France, Jan. 1997, pp. 174-
186.

[16-]Havelund K. and Pressburger T. "Model Checking Java

Programs using Java PathFinder". International Journal on

Software Tools for Technology Transfer, Vol. 2, No. 4, Apr.

2000, pp. 366-381.

[17] Haveland K. and Rosu, G. "Monitoring Java Programs with

Java PathExplorer". In Proceedings of the First International

Workshop on Runtime Verification (R V'01), Electronic Notes

in Theoretical Computer Science, Vol. 55, No. 2, Elsevier

Science, Paris, France, Jul. 2001.

[18] Jtrek. Compaq. http://www.compaq.com/java/download/jtrek

[19J Kiczales, G., Hilsdale, E., Hugunin, L, Kersten, M., Palm, J.,

and Griswold, W. G. An overview of AspectJ, Proceedings

ECOOP 2001, 1. L. Knudsen (Ed.) Berlin: Springer-Verlag

LNCS 2072, pp. 327-353.

[20] Kiczales, G., HJlsdale, E., Hugunin, L, Kersten, M., Palm, J.,

and Griswold, W. G. Getting started with AspectJ. Comm.

ACM Vol. 44, No. 10, 2001, pp. 59-65.

[21] Ossher, H. and Tarr, P. The shape of things to come: Using

multi-dimensional separation of concerns with Hyper/J to

(re)shape evolving software. Comm. ACM Vol. 44, No. 10,

2001, pp. 43-50.

[22]Pnueli A. 'q'he Temporal Logic of Programs". In

Proceedings of the J 8th IEEE Symposium on Foundations of

Computer Science, 1977, pp. 46-57.

[23]Savage S., Burrows M., Nelson O., Sobalvarro P., and

Anderson T. "Eraser: A Dynamic Data Race Detector for

Multithreaded Programs". ACM Transactions on Computer
Systems, Vol. 15, No. 4, Nov. 1997.

[24] Stoller S. D. "Model-Checking Multi-threaded Distributed

Java Programs". International Journal on Software Tools for

Technology Transfer, in press.

[25] Sullivan, G. T. Aspect-oriented programming using

reflection and meta-object protocols. Comm. ACM Vol. 44,

No. 10, 2001, pp. 95-97.

[26] Teitelman, W. and Masinter, L. The Interlisp programming

env/ronment, Computer Vol. 14, No. 4, I98I, pp. 25-34.

[27] Visser W., Havelund K., Brat G., and Park S. "Model

Checking Programs". In Proceedings of ASE'2000: The 15th
IEEE International Conference on Automated Software

Engineering. IEEE CS Press, Sep. 2000, pp. 3-12.

